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ABSTRACT
Designing wearable technology presents a unique set of challenges

in order to facilitate widespread adoption. Devices need to gener-

alize and be intuitive in order for users to integrate these devices

into their daily lives in a meaningful way. When designing assistive

technology for individuals with neuromotor impairments, rather

than focusing on generalizing to a diverse target population, one

approach is to customize the device for each user. Customization

in the target population thereby enhances the device performance

to its particular use case. The purpose of this work is to highlight

the evolution of a Body-Machine Interface (BoMI) to control a 7

degree-of-freedom (DoF) robotic arm and to discuss the experi-

mental protocol for individuals with cervical spinal cord injuries

(cSCI). The vetting study, a subset of the work documented in this

submission, assesses learning with an interface without the need

for mode switching. The transition from a pilot study with control

subjects to the first stages of studies with cSCI participants and the

corresponding design adaptations are discussed. Preliminary results

from the vetting study (acquired from an uninjured test subject)

suggest learning of the interface. Results and feedback prompted

further changes which are currently being vetted on end-users.

CCS CONCEPTS
• Human-centered computing → Accessibility design and evalu-
ation methods; User interface design; Interface design proto-
typing; Accessibility technologies.
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1 INTRODUCTION
Design for mass adoption does not impose the same limitations as

designing systems for those with neuromotor impairments. The

shift from designing for uninjured subjects to designing for the in-

jured population underscores the complexities and unique scenarios

encountered with a research project’s system. These special design

considerations are important in the field of assistive technology to

combat device abandonment rates. Prior research shows, 29.3% of

assistive devices were abandoned by people experiencing a variety

of impairments, with device performance falling within the top

three predictors [7]. For those with cSCI–in this work targeting an

injury range of complete (ASIA A) lesion at C3-6 or an incomplete

injury (ASIA B, C, or D) lesion in the cervical cord or upper tho-

racic region (T1-T4)–the difficulty in design stems from the same

classifications of injuries manifesting themselves differently from

person to person [6].

For individuals with a cSCI, assistive devices are their main

means of gaining independence, but the effects of having the appro-

priate assistive device goes beyond self-sufficiency. By providing

adequate assistive technologies, people are more likely to partic-

ipate in society and are less likely to develop certain noncommu-

nicable diseases [9]. One of the most common devices employed

is the wheelchair. For others experiencing tetraplegia, the use of a

robotic arm is the main solution to compensate for limited hand

and arm function. The corresponding interfaces with these devices–

joysticks, head arrays, sip-n-puffs–employ low dimensional meth-

ods of control, with joysticks offering the highest mode of control

in 3 dimensions. When these systems are used to interface with

devices with high dimensional control spaces, such as the robotic

arm, the main design flaw arises in the necessity for frequent mode

switching to access all control dimensions.Withoutmode switching,

the user will never have access to all 6 control dimensions–defined

in this paper as Cartesian end-effector control: 𝑥 , 𝑦, 𝑧, 𝜙𝑝 , 𝜙𝑦 , 𝜙𝑟 .

This results in frustration and mental fatigue as additional planning
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becomes necessary with each mode switch. These interfaces do not

conform to accommodate the specific physiological constraints of

the user, rather the user must conform to the constraints of the

interface. These are all scenarios in which the performance of the

device is compromised.

These pain points underscore the much needed customized de-

sign of an interface capable of controlling in high dimensions with-

out mode switching. The BoMI [2, 5, 11] is an interface capable of

addressing these challenges and is customizable to the physiological

constraints of the user. At a high level, the BoMI captures the upper

body motions of an individual using inertial measurement units

(IMUs) and transforms those signals to the velocity control space

via a mapping scheme. In the current iteration of the BoMI, the

user first calibrates the system by collecting the following body mo-

tions: (1&2) right/left shoulder forward/backward; (3&4) right/left

shoulder up/down; (5&6) right/left arm abduction/adduction. These

recordings are used to generate a map using a supervised learning

approach. During runtime, a k-nearest neighbors (KNN) classifier

is used to initially predict the probability of a given motion. The

magnitude of the motion is determined from the 6 principal com-

ponent analysis (PCA) maps derived from the calibration data. The

first principal axis of each is used to determine the amplitude of

the control signal.

With the end goal to target the cSCI population, prior studies

were conducted with uninjured participants in a pilot study to

assess the viability of mapping upper body motions to high dimen-

sional control [4]. Building upon the findings of this experiment,

the next phase transitions the pilot design to fit within the cSCI user

requirements. This paper extends the work demonstrated in [10]

and presents the evolution of the design process of the BoMI sys-

tem, study design, and learning paradigm. The end goal is to have

end-users control a 7 DoF robotic arm using residual upper bodymo-

tions. Preliminary results from a vetting study which implemented

these changes are presented.

2 DESIGN FOR THE END-USER
From equipment to protocol, transitioning from control subjects to

cSCI participants impacts design in all aspects. These adaptations

necessitate further exploration to validate their effectiveness within

the target population. The discussed adaptations to the BoMI and

body-motion prompt designs were evaluated in a scoping study

with end-users.

2.1 Body-Machine Interface
The pilot BoMI comprised 5 IMUs: One on each shoulder, one on

each upper arm, and one in the center of the chest. These IMUs

were adhered to a compression shirt using Velcro. For the IMUs to

accurately capture the upper body motions, the shirt needs to be

close fitting. Upon introduction, control subjects reported the shirt

was difficult to don and doff due to the compressive nature. With

the pilot design, neither the end-user nor the caregiver would be

able to assist in situating the BoMI without great difficulty.

The transition to the use case on cSCI participants requires mod-

ifications to streamline the donning and doffing process. The BoMI

now resembles a vest with Velcro fasteners on the sides. This al-

lows the vest to easily slip over the head of the user without the

need to significantly raise their arms. The arm sensors are secured

to removable bands above and below the elbow allowing further

flexibility in customization and fully leverage the user’s input space

to capture greater amounts of variance in their movements.

2.2 Prompt Design
The basis for the mapping scheme lies in the calibration data col-

lected for computation. With the shoulder joint being classified

as a compound joint [12], this poses the challenge of designing 6

distinct prompts in a highly coupled region of the body befitting

for those with cSCI. The initial body motion prompts consist of

(1&2) right/left shoulder forward/backward, (3&4) right/left shoul-

der up/down, and (5&6) right/left arm shoulder curl in/out. The

shoulder curl motion requires the user to bring the shoulder across

the front of their body instead of straight forward as in prompts 1

and 2. When these prompts were presented to lab members not af-

filiated with the project, the reported initial impressions include (1)

not "feeling" the difference between the curl prompts and shoulder

forward/backward and (2) significant discomfort performing the

motion.

Following this feedback, two additional promptswere developed–

right/left shoulder abduction/adduction (referred to as elbow prompts).

The elbow prompts were added as a means to replace curl with

motions that were further removed from the coupled motions of

the shoulder joint. Furthermore, the elbow prompts introduce more

variance into the signals. Participants are instructed to place their

hands in a stationary position on the armrests of a wheelchair or

resting on their lap and then push the elbow out and pull it in

towards their body.

3 SCOPING STUDY
The culmination of these changes led to a scoping study to assess

the viability within the cSCIs population. The scoping study serves

as means to (1) validate that the motion prompts provided enough

variance in those with limited RoM compared with the control pop-

ulation, (2) compare the curl and elbow prompts, and (3) to gain

feedback on the vest design from end users.

Participants For this study, 3 participants were recruited with

varying levels of RoM and cSCI: C3 Complete, C4 Incomplete, and

C5 Incomplete (3M, age 63 ± 20.4) with the goal of evaluating these

changes on a variety of upper body RoM levels.

Hardware & Software For this study, 4 IMUs (3 Space Sensors,

Yost Labs, Portsmouth, OH, USA) were used to capture upper body

motions using quaternions. These signals were streamed via Blue-

tooth to a computer running the Ubuntu 18.04 operating system

and recorded using the Robotic Operating System (ROS) Noetic.

ProtocolThe data collection protocol requires participants to re-

peatedly execute the same prompt for 2 minutes while wearing the

BoMI; this was repeated for each of the 8 prompts. Participants were

then asked to undergo a free-exploration recording in which they

were instructed to move their shoulders "randomly" for 3 minutes.

For each participant, two maps were computed one using prompts

1-4 plus the curl prompts and second one using prompts 1-4 plus

the elbow prompts.
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Figure 1: (a) PCA embedding of IMU signals of C5 Incomplete
(scoping study) (b) PCA embedding of IMU signals of C7
Incomplete (vetting study)

ResultsWith the elbow prompts, the cSCI participants were able

to account for 73.8 ± 1.3% of the net amount of motion exhibited

in the unimpaired data [10]. When comparing the curl and elbow

prompts, the feedback from the injured population aligned with

reports from the control subjects. The most frequent complaint was

the lack of understanding of what the curl prompt is and how it

differs from shoulder forward/backward. The main priority was

addressing discomfort participants also reported feeling when per-

forming the curl prompts, an opinion also shared by several of our

control subjects. With end-user adoption as the main goal, the opin-

ion of the end-users was heavily weighted when making a decision

about the final two prompts. Ultimately, the elbow prompts were

selected. At the conclusion of the scoping study, these changes were

implemented.

4 HIGH DIMENSIONAL CONTROL
With the altered prompt and BoMI designs, the next phase is inte-

gration of the interface with a simulated 6D control environment.

The BoMI visualizer feedback GUI has 6 channels representing one

of the 6 dimensions of BoMI control. Color-coded arcs within these

channels are controllable by the BoMI. The deadzone is denoted
by a grey band in each channel. This is an adjustable region in

the control space that does not actuate to account for small unin-

tended motions. When tested on lab members, control with this

interface was inconsistent and unreliable. These results prompted

investigation into the raw IMU signals the model was trained on

which revealed significant drift. Drift in IMUs is a known problem

that often worsens with time [3, 13], meaning prompts recorded

later in the sequence are most affected by drift. During real-time

control, motions of the later prompts in the recording sequence are

unrecognizable to the model. The following changes were made to

combat drift and unreliable signals (1) implement new IMUs, (2)

modify calibration protocol and (3) add more arm sensors.

Instead of clustering the prompts into 2 minute intervals, the

new protocol requires participants to perform a full cycle of the

6 prompts successively, 6 times. The new protocol was designed

with the intent of feeding the model data for all prompts affected by

varying levels of drift. Additionally, recording signals in a staccato
fashion is hypothesized to more closely resemble real-time input

data. Sensors were added below the elbows to capture more vari-

ance in the arm motions.

Validation of these changes is on going, with preliminary com-

parisons being made from participants in the scoping study and

the current cSCI participant in our vetting study (Sec. 6). Figure 1

shows a plot of the 2D PCA embedding of a scoping study partici-

pants under the original calibration protocol compared with our

current cSCI vetting study participant under the updated protocol.

Figure 1a lacks several of the characteristics displayed in Figure 1b

that we hypothesize suggest a viable map–defined as actuatable

in all 6 dimensions. These features include (1) perpendicular axes

with respect to the two side of the body [8] and (2) portions of all

these axes overlapping. The perpendicular axes suggest a reflection

of the expected symmetry across the two sides of the body. All

axes overlapping would suggest the presence of the deadzone in
which the participant is able to reach their rest position for every

prompt. Finally, the spread of clusters along the x-axis, as shown

in 1a, suggests the presence of IMU drift accumulating over the

recording. Using the updated protocol, from observational analysis,

GUI control appears more consistent and reliable.

5 VETTING STUDY
The feedback and the results from the scoping study inspired

changes to the system design and study protocol. These main

changes are (1) switching to elbow prompts, (2) additional arm

sensors, (3) new IMU hardware, and (4) updated calibration proto-

col. These changes led to vetting the full experiential protocol and

training paradigm on an uninjured participant (M 45).

Experimental Protocol In the vetting study, we aim to gain in-

sights into how a participant learns to interact with the robotic arm

using a supervised map based on classifying the 6 body prompts

explored in the scoping study. The study furthermore follows a

sliding dimensionality training paradigm to aid in human learning.

Training Paradigm The phased learning protocol iteratively un-

locks control dimensions to the user, and additionally engages

adaptive robot autonomy to assist with learning. In particular, the

user begins with operating only 3 dimensions of the BoMI, which

map to position control of the robot end-effector. Sessions evolve

in groups of 3, where each new block of 3 sessions unlocks an addi-

tional control dimension, and the progression of control dimension

unlocking occurs as 3→4→5→6.

Robot autonomy is employed to assist with learning for a sequen-

tial reaching (SR) task. Throughout and across a 3-session block,
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Figure 2: Average success throughout and across sessions. Red vertical lines denote an 𝛼 transition. Black vertical dashed lines
denote a session transition. (a) Plot the success density for 3D control–𝑥 , 𝑦, and 𝑧 unlocked– and the corresponding 𝛼 values. A
target is considered reached when the end-effector frame is within 10cm in each translation direction. (b) Plot of the success
density for 6D control–all control dimensions unlocked–with the corresponding 𝛼 values. The blue line considers a target
reached when the user reaches the target within a translation threshold of 10cm. The green line considered a target reached
when the user is within the translation threshold and an orientation threshold of 0.4 radians in 𝜙𝑟 , 𝜙𝑝 , 𝜙𝑦 .

we iteratively reduce the autonomy contribution to in turn reduce

participant dependence on autonomy assistance. At the start of

a new block, a high level of assistance is engaged, which recedes

over the three sessions until the human is in full control by the

end of the third session [1]. The autonomy signal is generated via a

potential fields controller that knows of obstacles (table, cage) and

the target location. The autonomy signal is linearly blended with

the user command via:

u = (1 − 𝛼) · uℎ𝑢𝑚𝑎𝑛 + 𝛼 · u𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦

and progressively decreasing the value of𝛼 accomplishes the phased

reduction in autonomy assistance. The𝛼 adaptation schedulewithin

a given block proceeds as 𝛼 = 0.8 → 0.6 → 0.3 → 0.

Hardware In this study, a participant interfaces with a 7DoF JACO

v2.0 robotic arm (Kinova Robotics, Quebec, Canada). Participants

do not have control over the gripper state, and Kinova’s inverse

kinematics maps the 6D robot (end-effector) control command to

the 7 robot joints. The BoMI-mounted IMUs (MbientLab, San Jose,

CA) collect orientation data from the end-user at 40 Hz, formatted

as quaternions. These quaternions are transformed via our map-

ping scheme to the 6D end-effector control. The Kinova onboard

controller maps these control signals to joint torques which will

move the end-effector along the actuated control dimension.

Targets for reaching tasks are presented as wooden blocks affixed

to the inside boundaries of an icosahedral cage.

5.1 Preliminary Results
Preliminary results from this vetting study are found in Figure 2.

These plots summarize how the target success density for the SR

task of the user is impacted by changes in the 𝛼 level and as more

dimensions are unlocked. There is a moving window of 10 targets

with an overlap of 5 applied to the data; this moving window counts

successful reaches as 1 and counts unsuccessful reaches as 0 and

resets the metric at every 𝛼 and session transition.

From these results, we see in Figure 2a how low dimensional

translation control poses little challenge to the participant as they

are able to consistently reach targets. This holds even when there is

no autonomy assistance. However, during 6D control, they are less

consistent in achieving the targets as they might unintentionally ac-

tivate other control dimensions.When looking at Figure 2b, the blue

line denotes a target reached when the user is within the translation

threshold dimension and the green line denotes a target reached

when the user is within the translation and orientation thresholds.

Comparing these lines we see a monotonically increasing trend

where the user is able to reach a success density higher than at

which they started for both session 10 and session 12. This trend is

not seen in session 11, which is hypothesized to be because the user

has majority influence over the control space in the new unlocked

dimension for the first time. These results also indicate that there

are instances in which the user is able to reach the target in the

translation dimensions but could not in the orientation dimensions;

supported by participant feedback citing orientation being more

difficult to reach than translation.

The results from this vetting study suggest that with this proto-

col and learning paradigm the participant is able to achieve a final

success density without autonomy comparable to their starting rate

with majority autonomy control across a dimension block.

6 CONCLUSION
The evolution of transitioning to designing and evaluating assistive

systems for those with cSCIs is iterative. End-user involvement

through fact-finding missions to influence downstream system

changes early on is valuable. For this project, the evolution to eval-

uating a full pipeline on an end-users from an initial pilot study

involved a scoping study with end-users to better understand the

degree of limitations a person might experience and gain feedback

on the system design. From these results, adaptations surrounding

calibration methods, vest, design, and study protocol were imple-

mented. The changes reported as a result of the vetting study are

currently being vetting by an cSCI participant. Early results and

feedback are prompting further design changes.
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