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ABSTRACT
In a world where human-robot interactions are becoming increas-
ingly common, it is important to ensure that our ability to interface
with those robots is fully accessible to people with a wide variety
of levels of ability. In noisy systems where the robot’s motion is
not state-dependent, Principal Component Analysis serves as a
data-driven test to determine if a system is controllable, and to
what degree it is. Its data-driven nature is applicable in cases where
analytical models of the controller are very complex, such as neural
networks or other machine learning models.

CCS CONCEPTS
•Mathematics of computing→ Probability and statistics; •Human-
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Interaction design process and methods.
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1 INTRODUCTION
As robots become more present in our everyday world, one impor-
tant question to consider is how they will interact with humans.
Transparency in this interaction is essential in the understanding
of how robots perform. One natural scale to consider these inter-
actions is at the control interface level; and it is necessary to have
interfaces that can function for people at a wide variety of ability
levels[2][3]. People who have neuromotor dysfunctions often have
difficulty operating traditional interfaces, such as video game con-
trollers and haptic systems. Instead, their varying levels of residual
motion present their own sets of challenges in designing control
systems. To ensure that interfaces are accessible to people with
neuromotor deficits, the control scheme for those interfaces must
be designed in a manner which avails as much of the interface’s
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control space as possible. By providing a user greater agency in
their interface use, the systems which the user controls with that
interface will be more transparent in function [1][7].

This paper was developed as a response to another studywherein
participantswith varying degrees of spinal cord injurywere prompted
to control a robotic arm via shoulder movements[4]. With each
shoulder being restricted to simply performing up/down and for-
wards/backwards motions, the number of available degrees of free-
dom came into question. The four input degrees of freedom were
theoretically not enough to span the 6-dimensional workspace of
the robotic arm. However, this could not readily be verified because
the mapping between the sensor readings and the robot behavior
was determined via a variational auto-encoder network, and as a re-
sult, the complexity of the network and the high dimensionality of
the data prevented simple controllability testing. Additionally, exist-
ing data-driven controllability tests only work for linear systems [6],
which is a condition that does not hold for deep neural networks.
The controllability test would therefore need to apply across both
linear and nonlinear systems. We propose making use of Principal
Component Analysis (PCA) to perform that testing. Specifically,
we will analyze the controllability of systems designed for use by
patients with limited residual movements, under what conditions
the systems are and are not controllable, and how PCA can serve
to answer those questions under a specific set of conditions.

2 OBJECTIVE
The purpose of this paper is to propose an efficient, data-driven
test for controllability in certain types of nonlinear systems with
applications in the design of accessible control schema.

3 NOTATION
We will define the vector 𝑥 to be the state of the system and the set
𝑋 to be the set of all achievable states of the system. Expanding off
of this, ¤𝑥 will be the time derivative of the state, and ¤𝑋 is the set
of all possible time derivatives. Additionally, we will define 𝑢 (𝑡) to
be the vector control signal for the system and 𝑈 to be the set of
all possible control signals. Furthermore, we define the function
𝑓 : 𝑈 → ¤𝑋 to be our controller that maps the control inputs to the
corresponding output behavior. All together, these create the form
of the system that will be relevant to this paper, which is shown in
Equation 1.

¤𝑥 = 𝑓 (𝑢 (𝑡)) (1)

Equation 1 will serve as the basis for all of the analysis conducted
in Section 4, and will function with slight modification in Section 5.
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4 NOISELESS CONTROLLABILITY TESTING
In performing traditional controllability tests for nonlinear systems,
finding an analytical solution is known to be an incomputably
difficult problem [8]. With the advent of neural networks and other
highly nonlinear systems, it instead makes sense to take a more
data-driven approach, where the model itself is not analyzed[6].
Rather, the input and output data will instead be analyzed, and then
a result will be derived based off of that.

Next, we must define controllability. In this context, we will
define it as when:

(A) That system starts at any arbitrary 𝑥0 ∈ 𝑋 .
(B) There exists a 𝑢 (𝑡) ∈ 𝑈 such that the final state of the system
can become any arbitrary 𝑥 𝑓 ∈ 𝑋 .

A more intuitive way to think about controllability is the sys-
tem’s ability to reach every point. For instance, if a robot arm could
reach every possible end-effector orientation and position, then the
system would be considered controllable. If, however, it could not
reach a set of endpoints due to limitations in the controller, then
that system would not be considered controllable.

By the Fundamental Theorem of Calculus, this is an equivalent
statement to Equation 2, where 𝑡0 and 𝑡𝑓 are the initial and final
time, respectively, and 𝑥0 and 𝑥 𝑓 can be any arbitrary states.

𝑥 𝑓 = 𝑥0 +
∫ 𝑡𝑓

𝑡0

¤𝑥𝑑𝑡 = 𝑥0 +
∫ 𝑡𝑓

𝑡0

𝑓 (𝑢 (𝑡))𝑑𝑡 (2)

Using this fact, we will prove in the case where the data in
symmetric about the origin, a matrix rank test (MRT) is sufficient
to demonstrate controllability. To do this, we will proceed with a
proof by induction. Suppose that 𝑢 (𝑡) is constant on some time
interval [𝑡0, 𝑡1), such that 𝑡0 < 𝑡1 < 𝑡𝑓 . It follows that Equation 2
can be rewritten as seen in Equation 3.

𝑥 𝑓 = 𝑥0 +
∫ 𝑡𝑓

𝑡0

𝑓 (𝑢 (𝑡))𝑑𝑡 = 𝑥0 + (𝑡1 − 𝑡0) 𝑓 (𝑢 (𝑡0)) +
∫ 𝑡𝑓

𝑡1

𝑓 (𝑢 (𝑡))𝑑𝑡

(3)
Defining the variable 𝑥1 = 𝑥0 + (𝑡1 − 𝑡0) 𝑓 (𝑢 (𝑡0)), Equation 3

further simplifies to the following as seen in Equation 4, where 𝑥1
is trivially a linear combination of 𝑥0 and 𝑓 (𝑢 (𝑡0)).

𝑥 𝑓 = 𝑥0 + (𝑡1 − 𝑡0) 𝑓 (𝑢 (𝑡0)) +
∫ 𝑡𝑓

𝑡1

𝑓 (𝑢 (𝑡))𝑑𝑡 = 𝑥1 +
∫ 𝑡𝑓

𝑡1

𝑓 (𝑢 (𝑡))𝑑𝑡

(4)
Now, suppose 𝑢 (𝑡) is piecewise constant in 𝑛 different regions

throughout the entire interval [𝑡0, 𝑡𝑓 ]. By the result derived above,
it follows that Equation 4 would be equivalent to Equation 5.

𝑥 𝑓 = 𝑥0+(𝑡1−𝑡0) 𝑓 (𝑢 (𝑡0))+
∫ 𝑡𝑓

𝑡1

𝑓 (𝑢 (𝑡))𝑑𝑡 = 𝑥0+
𝑛∑︁
𝑖=0

(𝑡𝑖+1−𝑡𝑖 ) 𝑓 (𝑢 (𝑡𝑖 ))

(5)
Since 𝑢 (𝑡) is assumed to be continuous, it then follows that in

the limit as 𝑛 approaches infinity Equation 5 would hold for any
arbitrary signal 𝑢 (𝑡). Therefore, in the limit 𝑥 𝑓 − 𝑥0 is equivalent
to a certain linear combination of elements of ¤𝑋 . As we are dealing

with linear combinations, this structure nicely lends itself to a linear
algebra-based data-driven test, and in our case, the aforementioned
MRT.

Since 𝑥 𝑓 − 𝑥0 is a linear combination of values of 𝑓 , it follows
that if the values of 𝑓 serve as a basis for the space 𝑋 , the system is
controllable. To calculate this, all one needs to do is compute the
rank of the matrix [𝑓 (𝑢 (𝑡0)), 𝑓 (𝑢 (𝑡1), ...𝑓 (𝑢 (𝑡𝑓 ))]. If it is equal to
the dimension of 𝑋 , then the values of 𝑓 are a valid basis, and the
system is therefore controllable.

One important caveat here is that the coefficients for the linear
combinations are all positive, as it is not possible to hold a value
of 𝑢 (𝑡) for negative time. Therefore, if the data in the workspace is
not centered about zero, the result of this test may be erroneous.

Another important limitation is that through this test alone, it
is not possible to identify axes with problematic data. Therefore it
is not possible to identify which steps need to be taken to induce
desirable behavior. Principal Component Analysis (PCA) addresses
this issue by generalizing the idea of matrix rank[5]. It creates a
series of axes that span a dataset and computes the variance across
each axis. To perform an MRT from PCA, all one would need to do
is count the number of non-zero variances, meaning that PCA does
provides all of the information that the MRT does. However, PCA
can also address another issue which has gone undiscussed: noise.

5 NOISY CONTROLLABILITY TESTING
In dealing with real-world systems, noise is an ever-present issue.
To model it in this context, we will add 𝜖𝜂 (𝑡) to the control signal
𝑢 (𝑡), where 𝜂 (𝑡) is some arbitrary perturbation and 𝜖 is some small
number. Therefore, the system shown in Equation 1 becomes the
more complex Equation 6.

¤𝑥 = 𝑓 (𝑢 (𝑡) + 𝜖𝜂 (𝑡)) (6)

Due to the lack of causal connection between 𝜂 and 𝑢, we cannot
make use of the matrix rank test seen in Section 4. The introduction
of 𝜂 will instead induce a small perturbation across every axis,
making virtually every measurable system have rank of sufficient
order, irrelevant of its true controllability. Instead, we will make
use of Principal Component Analysis (PCA) to determine exactly
which axes have a significant amount of variance on them, and
which axes have variance that is simply due to the noise from 𝜂.

To determine which axes’ variance is noise-induced, we propose
making use of a ’noise threshold,’ which we decided to be around
1% of the variance across the largest principal axis. If the variance
across any axis was found to be roughly less than or equal to this
value, they should be treated as noise and dealt with accordingly.
This offers the advantage of not only finding noise in the data, but
also finding exactly which axes are affected.

Another advantage offered by PCA is its ability to determine
the distributions of the data across each axis, which was another
limitation of the MRT. The data can be directly projected onto
the principal axes that PCA constructs, and the distribution along
each axis can be easily determined. This can show if the system is
symmetric, and therefore if it is controllable.
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6 RESULTS
To determine the efficacy of the above tests, systems that were both
controllable and uncontrollable were simulated with a variety of
input data. One such controllable noiseless system is show below
in Equation 7, with the control input shown in Equation 8:

𝑓 (®𝑢) = ®𝑢 (7)

𝑢 (𝑡) =
[
2𝑠𝑖𝑛(𝑡)

𝑡
2

]
(8)

In the noisy equivalent of Equation 7, a small 𝜖𝜂 was added to
the output of 𝑓 . The results of the MRT and PCA controllability
tests are shown below in Table 1.

Test Noiseless Noisy
MRT Controllable Controllable
PCA Controllable Controllable

Table 1: The results of the controllability test for the noisy
and noiseless controllable sytems

System PC 1 Variance 1 PC 2 Variance 2

Noiseless
[
−.349
−.947

]
2.140

[
−.937
.349

]
1.724

Noisy
[
−.349
−.947

]
2.139

[
−.937
.349

]
1.724

Table 2: The results of PCA for the noisy and noiseless nonli-
naer controllable system

An uncontrollable system that was tested is shown below in
Equation 9, with the control input shown in Equation 8.

𝑓 (®𝑢) =
[
𝑢1
0

]
(9)

In the noisy equivalent of Equation 9, a small 𝜖𝜂 was added to
the output of 𝑓 . The results of the MRT and PCA controllability
tests are shown below in Table 3.

Test Noiseless Noisy
MRT Uncontrollable Controllable
PCA Uncontrollable Uncontrollable

Table 3: The results of the controllability test for the noisy
and noiseless uncontrollable sytems

Notably, both of the above systems discussed are linear. PCA
also can identify controllability in nonlinear systems, such as the
controllable nonlinear system seen below in Equations 10 and 11.

®𝑢 (𝑡) =
[

𝑡

𝑐𝑜𝑠 (𝑡 + 3)

]
(10)

𝑓 (®𝑢) =
[
𝑠𝑖𝑛(𝑢1)
𝑢2

]
(11)

System PC 1 Variance 1 PC 2 Variance 2

Noiseless
[
1
0

]
1.856

[
0
1

]
0

Noisy
[
.999999
.00003

]
1.775

[
−.00003
.99999

]
0.00008

Table 4: The results of PCA for the noisy and noiseless linear
uncontrollable system

Once again, in the noisy equivalent of the system from Equations
10 and 11, we add a small 𝜖𝜂 to the control signal 𝑢. The results of
the test are shown below in Table 5, with more data from the PCA
test being shown in Table 6.

Test Noiseless Noisy
MRT Controllable Controllable
PCA Controllable Controllable

Table 5: The results of the controllability test for the noisy
and noiseless controllable nonlinear system

System PC 1 Variance 1 PC 2 Variance 2

Noiseless
[
−.535
−.844

]
.581

[
−.844
.535

]
.388

Noisy
[
−.540
−.841

]
.584

[
−.841
.540

]
.386

Table 6: The results of PCA for the noisy and noiseless nonli-
naer controllable system

These tests can also identify uncontrollability in nonlinear sys-
tems. Using the same control input found in Equation 10, we can
modify the system found in Equation 11 to an uncontrollable vari-
ant, found in Equation 12.

𝑓 (®𝑢) =
[
𝑠𝑖𝑛(𝑢1)
2𝑠𝑖𝑛(𝑢1)

]
(12)

This system provides a controller whose mapping from the con-
trol signal to the control signal is nonlinear, but the two outputs are
linear combinations of each other. This leads to uncontrollability,
and the results of the tests performed on the noisy and noiseless
systems are shown in Table 7.

Test Noiseless Noisy
MRT Uncontrollable Controllable
PCA Uncontrollable Uncontrollable

Table 7: The results of the controllability test for the noisy
and noiseless uncontrollable nonlinear system
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System PC 1 Variance 1 PC 2 Variance 2

Noiseless
[
.447
−.894

]
2.218

[
−.894
−.447

]
0

Noisy
[
.447
−.894

]
2.218

[
−.894
−.447

]
0.01

Table 8: The results of PCA for the noisy and noiseless non-
linear uncontrollable system

7 DISCUSSION
Through the analyses of these systems, we found that the MRT
was successful in correctly identifying some of the noiseless sys-
tems as controllable or uncontrollable, only failing when the data
was not symmetric about the origin. However, it identified every
noisy option as controllable regardless of the system’s true nature.
In contrast, PCA was found to work in all of the observed cases.
It could successfully identify the axes that were controllable and
uncontrollable, any asymmetric axes in the dataset, and even func-
tioned when the data had artificially induced noise. Additionally,
both tests performed as expected, irrespective of the linearity of
the system.

The authors found that no standardized threshold of variance
attributable to noise (as discussed in Section 5) could be found.
Therefore, the authors of this paper decided to select the value of
1% of the maximum variance as the threshold to be attributed to
noise, and anything more than that could be considered statistically
significant.

One limitation of the PCA test is it requires prior knowledge of
the workspace and requires the workspace to be euclidean. Addi-
tionally, it does only apply to systems in the form of Equation 1,
meaning it cannot easily be generalized to a generic nonlinear case.
However it does provide unique insights into the dynamics of the
system, which is something that is generally difficult to achieve
when dealing with deep neural networks.

8 CONCLUSION
When analyzing control systems designed for people with different
levels of residual motion, accessibility is important to consider. If
the system is of the form seen in Equation 6, we propose using PCA
on the output dataset to determine if the system is controllable.
PCA provides insights on which axes are not controllable, to what
degree they are not controllable, and possibly even steps to correct
for those errors.
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